1.	Which is amphoteric oxide?					
	A. Na ₂ O	B. MgO	C. Al ₂ O ₃	D. SO ₃		
2.	The correct order of acidic nature of the oxide is:					
	$A. NO < N_2O < N_2O_3 < NO_2 < N_2O_5$					
			D. NO < N ₂ O < N			
3.	Which of the following can form both high and low spin complexes?					
	A. CO	B. F	C. NH ₃	D. CN		
4.	Which one has	the highest bond	energy?			
	A. 0-0	B. S-S	C. Se-Se	D. Te-Te		
5.		compound, A ato		ngement, B atoms are a		
	A. A ₂ B	B. AB ₂	C. A ₂ B ₂	$D.A_3B_2$		
6.	following is con	rect electronic	configuration of ga	nber is 64. Which of the adolinium? of $^86d^2$ D. [Xe] $4f^95s^3$		
7.	Which one of th	e following pair	s of solution is no	t an acidic buffer?		
	A. H ₂ CO ₃ and Na ₂	$_2$ CO $_3$	B. H_3PO_4 and	Na_3PO_4		
	C. HClO ₄ and Na	CIO ₄	D. CH ₃ COOH	and CH ₃ COONa		
8.		g behavior of H ₅				
	A. High oxidation	state of phosphori	18			

B. Presence of two -OH groups and one P-H bond

C. Presence of one –OH group and two P-H bonds

D. High electron gain enthalpy of phosphorus

9.					
	A. 23% B. 32%	C. 26% D. 48%			
10). Which one of the following is present	ent as an active ingredient in bleaching			
	powder for bleaching action?				
	$A. \ CaCl_2 \\ B. \ CaOCl_2$	C. $Ca(OCl)_2$ D. CaO_2Cl			
11	. The complexes [Co (NH ₃) ₆] [Cr (Cl	$[N)_6$ and $[Cr\ (NH_3)_6]$ $[Co\ (CN)_6]$ are the			
	examples of which type of isomeris	m?			
	A. Geometrical isomerism	B. Linkage isomerism			
	C. Ionization isomerism	D. Coordination isomerism			
12.	. Which of the following complexes is	s used to be as an anticancer agent?			
	A. cis – K_2 [Pt $\operatorname{Cl}_2\operatorname{Br}_2$	B. Na ₂ CoCl ₄			
	C. mer – [Co $(NH_3)_3Cl_3$]	D. cis – [Pt $\text{Cl}_2 (\text{NH}_3)_2$]			
13.	The Lewis acid strength of BBr ₃ , B	Cl ₃ and BF ₃ is in the order			
	A. $BBr_3 < BCl_3 < BF_3$	$B. BCl_3 < BF_3 < BBr_3$			
	C. BF ₃ < BCl ₃ < BBr ₃	D. $BBr_3 < BF_3 < BCl_3$			
L 4.	O ²⁻ is isoelectronic with:				
	A. Zn ²⁺ B. Mg ²⁺	C. K ⁺ D. Ni ²⁺			
5.	The most abundant transition meta	l in human body is :			
	A. Copper B. Iron	C. Zinc D. Manganese			
6.	Two possible stereo structures of active, are called	$\mathrm{CH_{3}CHOH.COOH}$, which are opticall			
	A. Enantiomers B. Mesomers	C. Diastereomers D. Teflon			

17.	The correct order of increasing basicity among the following is						
		pyrrole < pyridine	B. pyridine < pyrro	le < piperidine			
2 45	C. pyrrole < py	ridine < piperidine	D. pyridine < piper	idine < pyrrole			
18.			tion of 1,3-dimethylcyc	clohexane, the methyl			
	groups will oc	cupy					
	A. Axial, axial		B. Axial, equatorial				
	C. Equatorial, e	quatorial	D. All the above				
19.	The product f	ormed when 1-buty	ne is heated with Hg	$\mathrm{SO_4}$ and $\mathrm{H_2SO_4}$ is			
	A. Butanal	B. 1-butene	C. 2-butene-1-ol	D. 2-butanone			
20.	Which among	the following will	undergo solvolysis by	SN ² reaction faster?			
	A. 1-chlorobuta	ne	B. 2-chlorobutane				
	C. 3-chloro-2,2-	dimethylpentane	D. 1-chlorocyclohexa	ane			
21.	Among the following the most stable carbocation is:						
	A. Phenyl	B. Vinyl	C. Methyl	D. Benzyl			
22.	The most acid	ic proton in the fo O- ² CH ₂ - CO- ¹ CH	llowing compound is	attached to carbon —			
	A. 1	B. 2	C. 3	D. 4			
23.	Conversion of	an amide to a pr	imary amine by trea	ting with Br ₂ /NaOH i			
	known as	rearrangement					
	A. Hoffman	B. Fries	C. Beckmann	D. Pinacol-Pinacolon			
24.	The electrophi	le that attack the a	romatic system in Ri	emer-Tiemann reactio			
	is:			na ja ja ja Sigge er egyvaji og			
	A. +CHO	B. CHO	C. $:CCl_2$	D. ⁺ CH ₂ Cl			
			- • 5 • 				

25.	— is a purine base present in RN	A.	
	A. Histamine B. Cytosine	C. Uracil	D. Guanine
26.	Nitrobenzene on reaction with con	c. HNO ₃ /H ₂ SO ₄ a	t 80-100° C forms which
	one of the following products?		
	A . 1, 2-Dinitrobenzene	B. 1, 3-Dinitrobe	enzene
	C. 1, 4-Dinitrobenzene	D. 1, 2, 4-Trinitr	obenzene
27.	Green Chemistry means such react	ions which:	
	A. Study the reactions in plants		r during reactions
	C. Reduce the use and production of haz	ardous chemicals	
	D. Related to the depletion of ozone layer		
28.	Which of the following will not rea	ct with sodium h	ydrogen carbonate?
	A. o-Nitrophenol	B. Benzenesulph	
	C. 2, 4, 6 – trinitrophenol	D. Benzoic acid	
9.	Which of the following will be most A. $CH_3CH_2 N_2^+ X^-$ B. $C_6H_5CH_2 N_2^+ X^-$	stable diazoniu X C. CH ₃ N ₂	m salt $\mathbf{RN_2}^+\mathbf{X}^-$? D. $\mathbf{C_6H_5N_2}^+\mathbf{X}^-$
0.	The number of structural isomers pos	ssible from the m	olecular formula ${ m C_3H_9}$
	A. 2 B. 3	C. 4	D. 5
. 1	Reaction of phenol with chloroform	in presence of d	lilute sodium hydroxid
f	inally introduces which one of the	following funct	ional group?
A	a. –CHCl ₂ B. –CHO	CCH ₂ Cl	D. –COOH
M	Iole fraction of the solute in a 1.00	molal aqueous	solution in
A	. 1.7700 B. 0.1770	C. 0.0177	D. 0.0344

33.	A buffer solution is prepared in which the concentration of $\mathrm{NH_3}$ is 0.30 M and the concentration of $\mathrm{NH_4}^+$ is 0.20 M. If the equilibrium constant, Kb for					
	NH_3 equals 1.8 x 10^{-5} , what is the pH of this solution?					
	A. 8.73 B. 9.08 C. 9.44 D. 11.72					
34.	Standard electrode potential for $\operatorname{Sn}^{4+}/\operatorname{Sn}^{2+}$ couple is +0.15 V and that for the $\operatorname{Cr}^{3+}/\operatorname{Cr}$ couple is 6 0.74 V. These two couples in their standard state					
	are connected to make a cell. The cell potential will be:					
	A. + 1.83 V B. +1.19 V C. +0.89 V D. +0.18 V					
35.	The freezing point depression constant for water is 61.86° cm ⁻¹ . If 5.00 g Na_2SO_4 is dissolved in 45.0 g H_2O , the freezing point is changed by 63.82° C.					
	The van't Hoff factor for Na ₂ SO ₄ is:					
	A. 0.381 B. 2.63 C. 2.05 D. 3.11					
1	the state of the same and the same of the					
36.	Which one of the following statements for the order of a reaction is					
	incorrect?					
	A. Order of reaction is always whole number					
	B. Order can be determined only experimently					
	C. Order is not influenced by stoichiometric coefficient of the reactants					
	of the formation is sum of nower to the concentration terms of reactants to express					
	the rate of reaction					
	Which of the following has the minimum bond length?					
37.	Which of the following $B. O_2^+$ $C. O_2^ D. O_2^{2-}$					
	$A. O_2 \qquad \qquad B. O_2 \qquad \qquad C. O_2$					
	The rate constant of the reaction A→B is 0.6 x 10 ⁻³ mole per second. If the					
38.	The rate constant of the reaction A B is stored a concentration of A is 5 M, then concentration of B after 20 minutes is:					
	D 2 60 M					
	A. 0.36 M B. 0.72 M C. 1.08 M D. 3.60 M					
	• 7 •					

39	For	the	reversible	roaction	
00.	LOL	uie	reversible	reaction	

 $N_{2(g)} + 3 H_{2(g)} = 2NH_{3(g)} + heat$

The equilibrium shifts in forward direction:

- by decreasing the concentration of N2(g) and H2(g)
- by increasing pressure and decreasing temperature
- by increasing the concentration of NH3(g)
- D. by decreasing pressure

40. Which of the following salts will give highest pH in water?

- A. Na₂CO₃
- B. CuSO₄
- C. KCl

D. NaCl

Which of the following molecules has the maximum dipole moment?

- A. NF₃
- B. NH₃
- $C. CO_2$
- D. CH_4

42. For a given exothermic reaction, Kp and K'p are the equilibrium constants at temperatures T₁ and T₂, respectively. Assuming that heat of reaction is constant in temperature range between T1 and T2, it is readily observed that:

- A. $K_p = K_p^!$ B. $K_p = 1/K_p^!$ C. $K_p > K_p^!$
- $D. K_p < K_p^!$

- A. Na
- $B. Mg^2 +$
- $\mathbf{C}, \mathbf{H}^{\dagger}$

D. Li

44. What is the maximum number of orbitals that can be identified with th following quantum numbers?
$$n = 3$$
, $l = 1$, $m = 0$

A.3

B. 4

C. 1

D. 2

Which of the following statements is not correct? **45.**

- A. For spontaneous process, \triangle G must be negative
- B. Enthalpy, entropy, free energy etc. are state variables
- C. A spontaneous process is reversible in nature
- D. Total of all possible kinds of energy of a system is called its internal energy

46.	Caprolactum is used for the manufacture of:					
	A. Terylene	B. Nylon – 6, 6	C. Nylon – 6	D. Teflon		
47.	The imperfect crystalline regions made from bundles/aggreagates of ordered chain are called:					
	A. Spherullites	B. Crystallites	C. Single crytals D. Dendrites			
48.	Starch, cellulose, glycogen are all the polymers of:					
£	A. Sucrose	B. Glucose	C. Glucose + Fructose D. Fructose			
49.	The Tg of the polymers behaving like rubber should be:					
	A. Higher than roo	om temperature	B. Equal to room temperature			
	C. Less than room	temperature	D. None of the above			
50.	Which of the following organic compounds polymerizes to form the polyester Dacron?					
	A .Terephthalic ac	id and ethylene glycol	B. Benzoic acid an	d para HO - (C_6H_4) - OH		
	C. Propylene and para HO - (C_6H_4) - OH		D. Benzoic acid and ethanol			